Electrifying Mobile Hydraulics

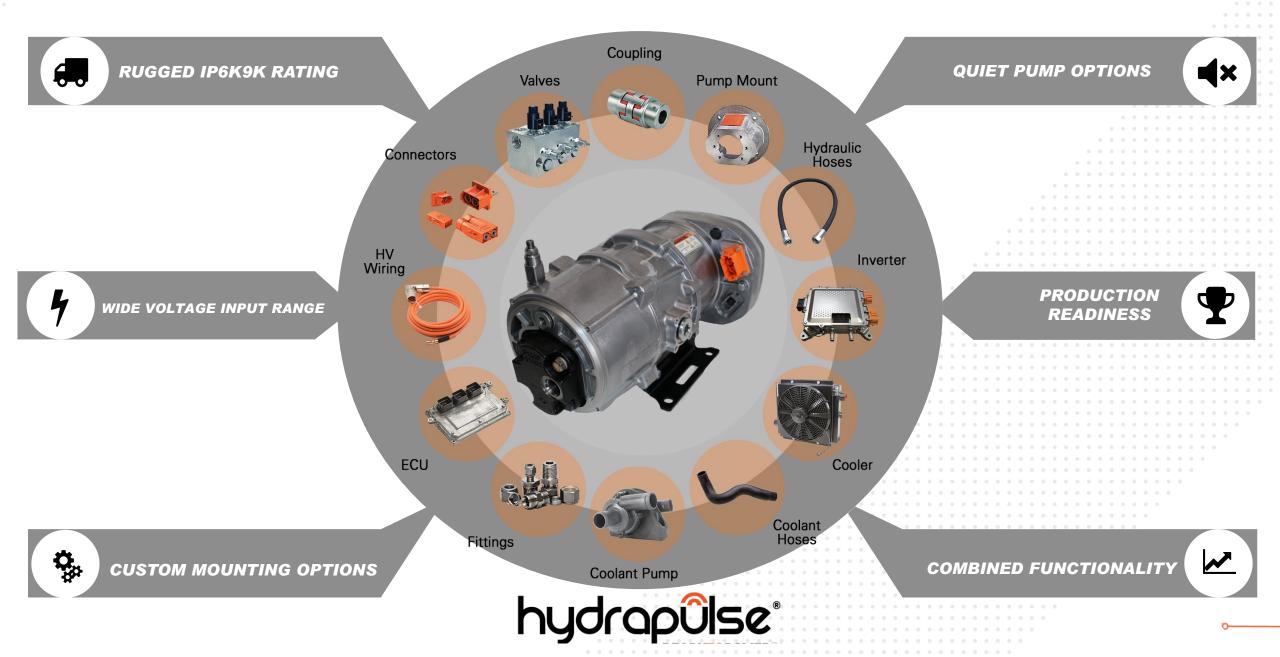
On hybrid- and battery- powered machines

Michael Terzo Founder & CEO Terzo Power Systems

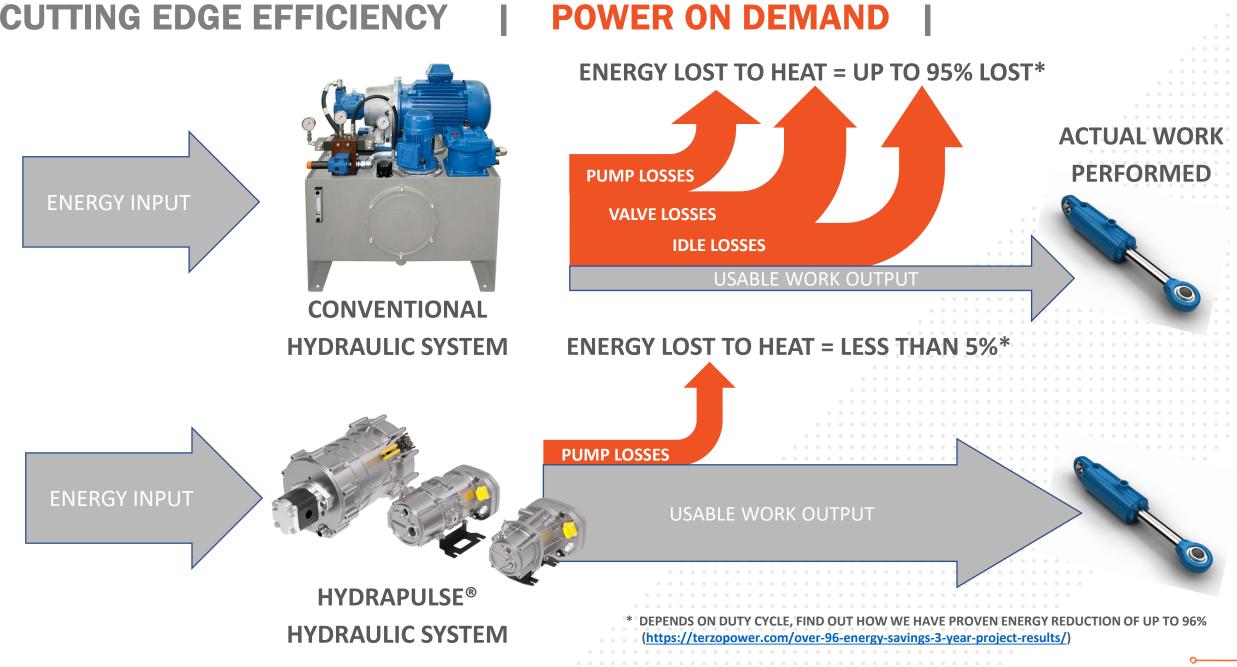
OUR MOTIVATION

INNOVATION | EFFICIENCY | SIMPLICITY

ON-HIGHWAY | OFF-HIGHWAY | INDUSTRIAL


TERZO POWER SYSTEMS, LLC

Terzo Power Systems produces a new, innovative line of electrohydraulic pump systems which provide flexible and easy to use technology designed for on- & offhighway mobile vehicles and industrial applications. Our Hydrapulse[®] products are fully integrated, economical, energy efficient systems with an electronically controlled motor & pump assembly all contained in a small, compact footprint.


COMPANY HIGHLIGHTS

- Technology Development & Manufacturing company
- Founded in 2014 by Michael Terzo
- Headquartered in El Dorado Hills, California
- High volume PCB fabrication, assembly, and testing in-house
- Medium-, Heavy-Duty, and Off-highway electrification solutions
- Industrial, Automation, and Motion Control solutions
- Launched the Hydrapulse[®] product line after 7 years of development.
- High volume final manufacturing in Chicago, IL.

NEXT GEN SOLUTION | INTEGRATION + INTELLIGENCE |

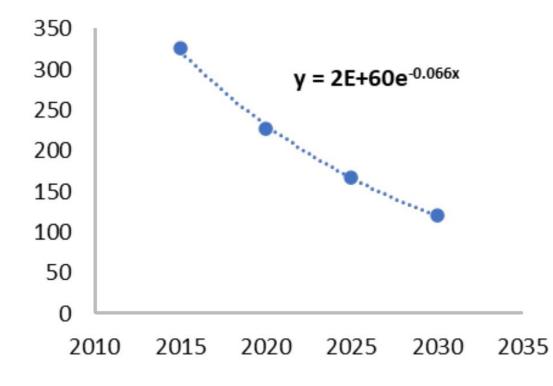
CUTTING EDGE EFFICIENCY

APPLICATIONS – COMMERCIAL TRUCKING

TCO has tipped in favor of ZEV

Will the same happen for off-highway?

Must Address the Elephant in the Construction site

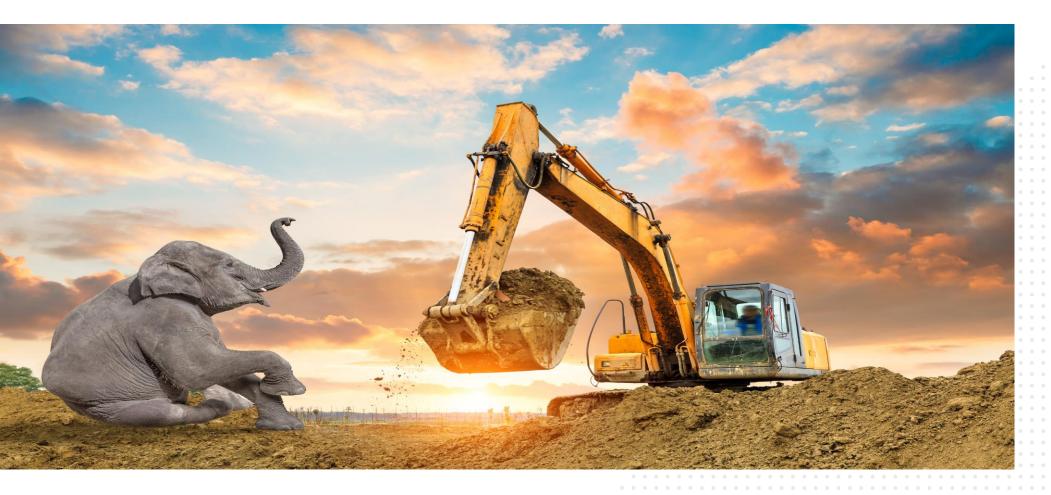

Construction equipment is not like a car.

- Batteries are not there yet
- Diversity of duty cycles
- Low volumes

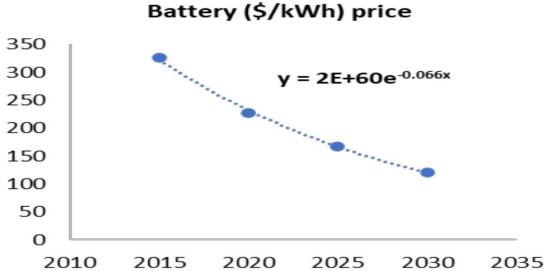
Therefore:

Mass adoption of pure electric heavyduty off-highway vehicles will not happen any time soon.

 FAULTY ASSUMPTION THAT BATTERY COSTS WILL CONTINUE DOWNWARD TREND



Battery (\$/kWh) price



Source: "Hybridization and Full Electrification Potential in Off-Road Application," Boriboonsomsin, 2022

 FAULTY ASSUMPTION THAT BATTERY COSTS WILL CONTINUE DOWNWARD TREND

 FAULTY ASSUMPTION THAT BATTERY COSTS WILL CONTINUE DOWNWARD TREND

 FAULTY ASSUMPTION THAT BATTERY COSTS WILL CONTINUE DOWNWARD TREND

RESEARCH SHOWS ITS NOT FEASIBLE

Battery Size by Equipment Type

Equipment Type	Usable Battery Size (kWh)	Actual Battery Size (kWh)	Rounded Actual Battery Size (kWh)
Excavators	420	546	550
Graders	491	638	640
Off-Highway Tractors	2,712	3,526	3,530
Rubber-tired Loaders	604	785	790
Scrapers	1,423	1,850	1,850
Tractors/Loaders/Backhoes	252	328	330

Source: "Hybridization and Full Electrification Potential in Off-Road Application," Boriboonsomsin, 2022

lybri Pote														
	(CA	RB A	gree	emo	ent	No.	18R	D01	6)					
		F	IN/	AL	RE	PO	RT							
		-			red		-							
		Califo	ornia	Air	Reso	urces	Boan	rd						
				1	By:									
Kanok E College of I		somsin ng - Ce Univer	nter t	or E	nviro	nmen	tal Re	searc	h and	Tech	n Wu inolog	У		
		Stev	en So		ky, Jo Staf		Stee	n						
			ŀ	inua	ry 20	022								
													_	

	Excavator	Grader	Off-Highway Tractors	Rubber-tired Loaders	Scrapers	TLB's
Actual Battery Size (kWh)	550	640	3,530 (<mark>3.5</mark> MWh)	790	1,850 (<mark>1.8</mark> MWh)	330
Actual Battery Weight kg (lbs)	3,642 (8,030)	4,238 (9,344)	23,377 (51,538)	5,231 (11,534)	12,251 (27,010)	2,185 (4,818)
Actual Battery Cost	\$137,500	\$160,000	\$882,500	\$197,500	\$462,500	\$82,500
Average vehicle purchase price (STANDARD DIESEL VEHICLE)	\$250,000	\$300,000	\$1,000,000	\$200,000	\$600,000	\$120,000

*References & calculations available. \$250/kWh battery system cost used.

RESEARCH SHOWS ITS NOT FEASIBLE

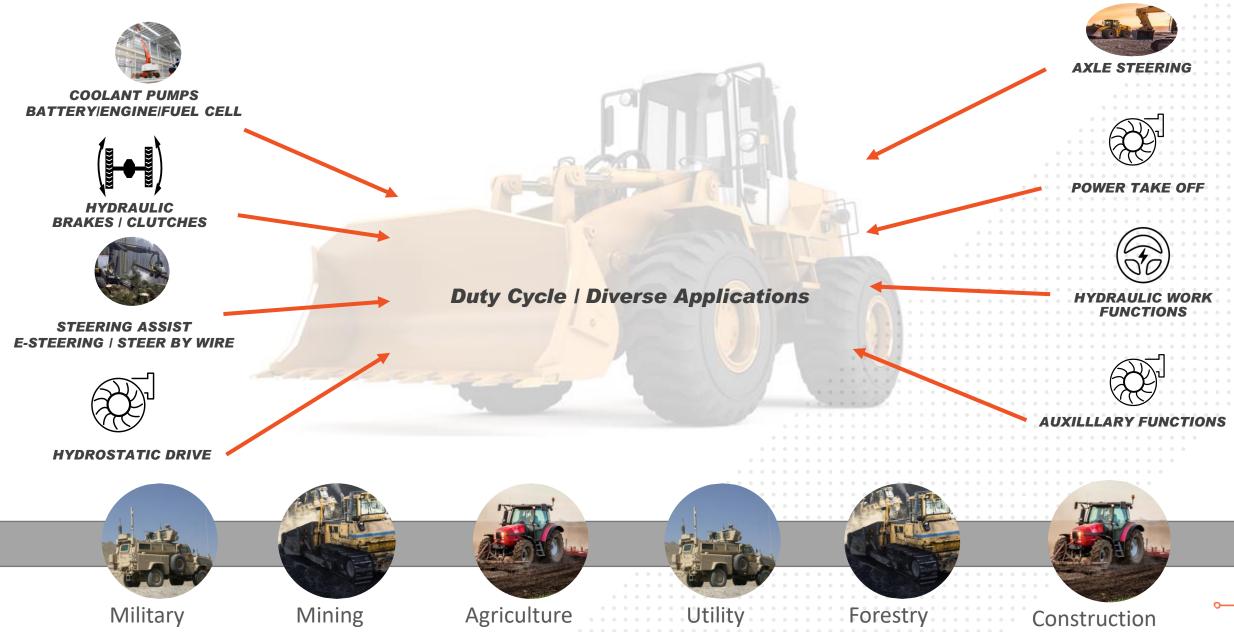
Battery Size by Equipment Type

Equipment Type	Usable Battery Size (kWh)	Actual Battery Size (kWh)	Rounded Actual Battery Size (kWh)
Excavators	420	546	550
Graders	491	638	640
Off-Highway Tractors	2,712	3,526	3,530
Rubber-tired Loaders	604	785	790
Scrapers	1,423	1,850	1,850
Tractors/Loaders/Backhoes	252	328	330

Source: "Hybridization and Full Electrification Potential in Off-Road Application," Boriboonsomsin, 2022

<section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header>					zat														
<section-header></section-header>		P	ot								-	-		tio	ns				L
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>					(CA	RB	Agre	em	ent	No.	18R	D01	6)						ŀ
Prepared for: California Air Resources Board By: Manok Boribonsonsin, Fuad Un-Noor, George Scora, Guoyuan Wa College of Engineering - Center for Environmental Research and Technology University of California Airverside Success Absorbed - California Airverside Success Absorbed - California Airverside January 2022						1	FIN	AL	RE	PO	RT								0
California Air Resources Board By: Manok Boriboonsomsin, Paud Um Noor, George Scora, Guoyuan Wu College of Engineering - Center for Environmental Research and Technology University of California at Revea University of California at Revea							F	ren	ared	for:									ŀ
By: Kanok Boriboonsomsin, Fuad Un-Noor, George Scora, Guoyuan Wa College of Engineering: - Canter for Environmental Research and Technology Inversity of California an Reveal University of California an Reveal California and Score a						Cali					Boa	rd							1
By: Kanak Boriboonsomini, Fuad Um Noor, George Score, Guoynan Wu College of Engineering: - Conter for Environmental Research and Technology University of California at Riverside Steven Sokolsky, Jordan Steen CALSTART January 2022																			
Kanok Boriboonsomsin, Fuad Dr. Noor, George Scora, Guoyuan Wu College of Engineering - Center for Environmental Research and Technology University of California a Riversity of California a Riversity Steven Sokolsky, Jordan Steen CALSTART January 2022									Dun										
College of Engineering - Center for Environmental Research and Technology University of California at Riverside California Technology California California California California January 2022		К	anok	Bori	boon	soms	in, Fr			or. Ge	Porge	Score	a. Gue	ovuar	ı Wu				ŀ
Steven Sokolsky, Jordan Steen CALSTART January 2022					ineeri	ng - C	enter	for E	nviro	nmer	ital Re	searc				y			ŀ
January 2022						Ste	ven S				1 Stee	n							ŀ
January 2022								CAI	STAF	T									
January 2022																			1
- - -								Janu	ary 2	022									1
0	_																_		
																			ŀ
																			•

	Excavator	Grader	Off-Highway Tractors	Rubber-tired Loaders	Scrapers	TLB's
Actual Battery Size (kWh)	550	640	3,530 (<mark>3.5MWh</mark>)	790	1,850 (<mark>1.8MWh</mark>)	330
Actual Battery Weight kg (lbs)	3,642 (8,030)	4,238 (9,344)	23,377 (51,538)	5,231 (11,534)	12,251 (27,010)	2,185 (4,818)
Actual Battery Cost	\$82,500	\$96,000	\$529,500	\$118,500	\$277,500	\$49,500
Average vehicle purchase price (STANDARD DIESEL VEHICLE)	\$250,000	\$300,000	\$1,000,000	\$200,000	\$600,000	\$120,000

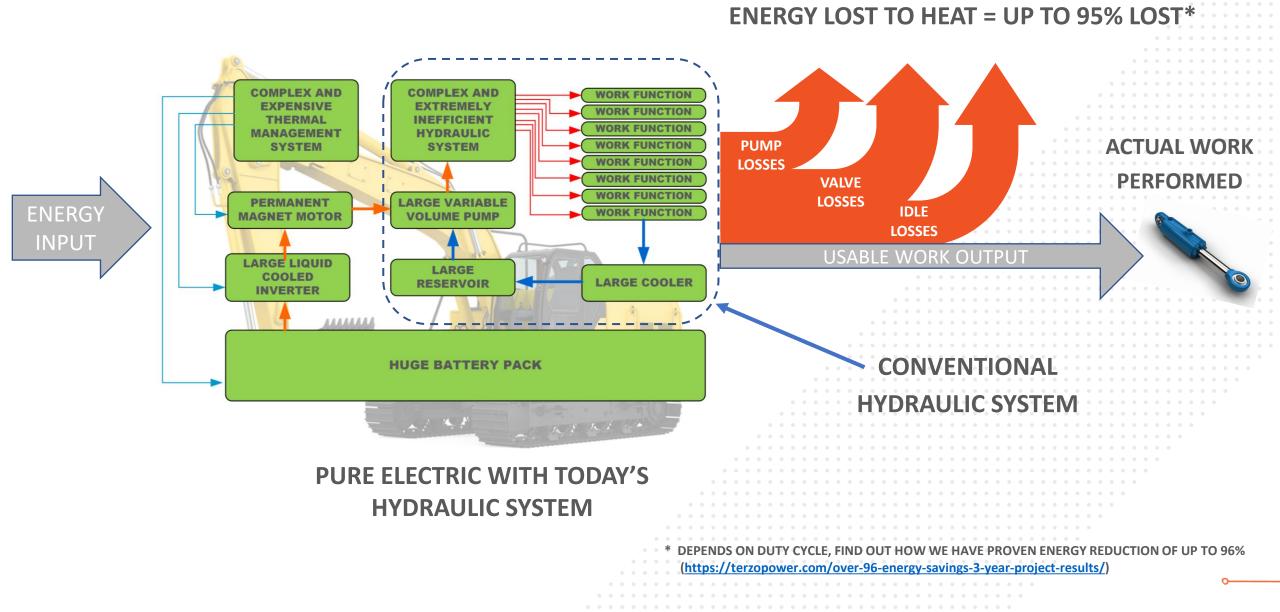

*References & calculations available. \$150/kWh battery system cost used.

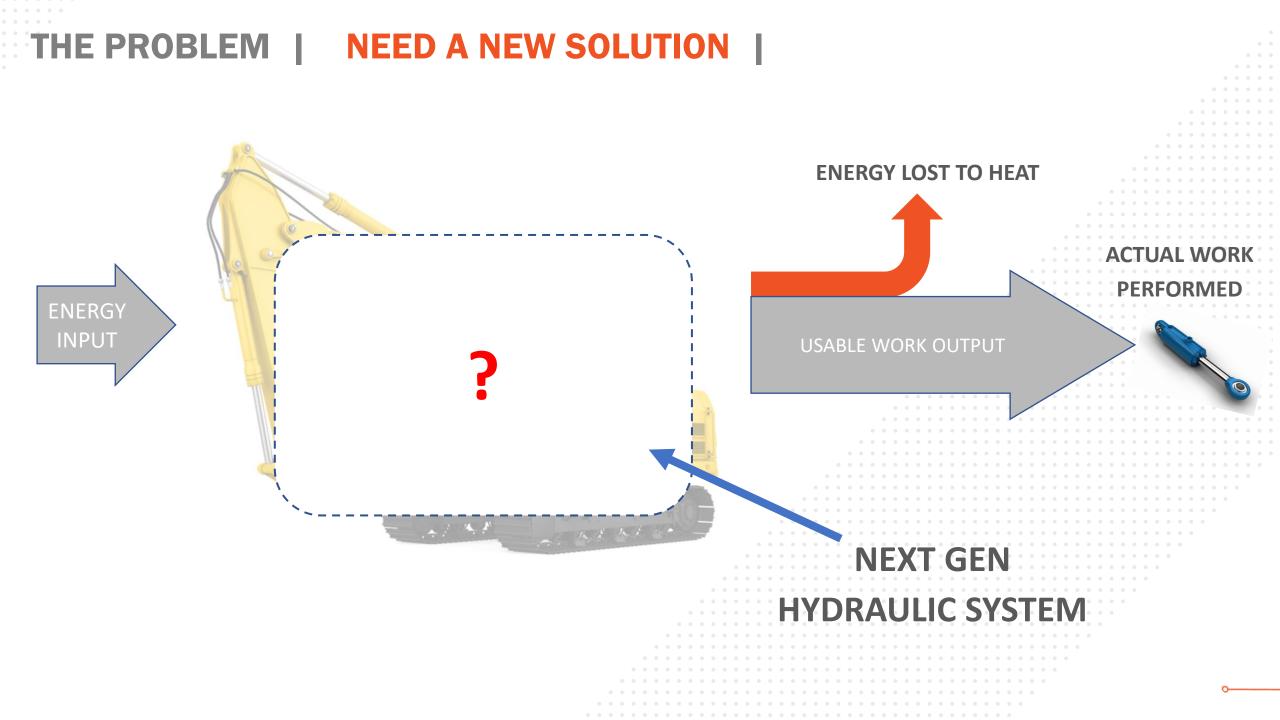
RESEARCH SHOWS ITS NOT FEASIBLE

	Excavator	Grader	Off-Highway Tractors	Rubber-tired Loaders	Scrapers	TLB's
Actual Battery Size (kWh)	550	640	3,530 (<mark>3.5MWh</mark>)	790	1,850 (<mark>1.8MWh</mark>)	330
Actual Battery Weight kg (lbs)	3,642 (8,030)	4,238 (9,344)	23,377 (51,538)	5,231 (11,534)	12,251 (27,010)	2,185 (4,818)
Actual Battery Cost - \$250/kWh	\$137,500	\$160,000	\$882,500	\$197,500	\$462,500	\$82,500
Actual Battery Cost - \$150/kWh	\$82,500	\$96,000	\$529,500	\$118,500	\$277,500	\$49,500
Actual Battery Cost - \$80/kWh	\$35,200	\$40,960	\$225,920	\$50,560	\$118,400	\$21,120
Average vehicle purchase price (STANDARD DIESEL VEHICLE)	\$250,000	\$300,000	\$1,000,000	\$200,000	\$600,000	\$120,000

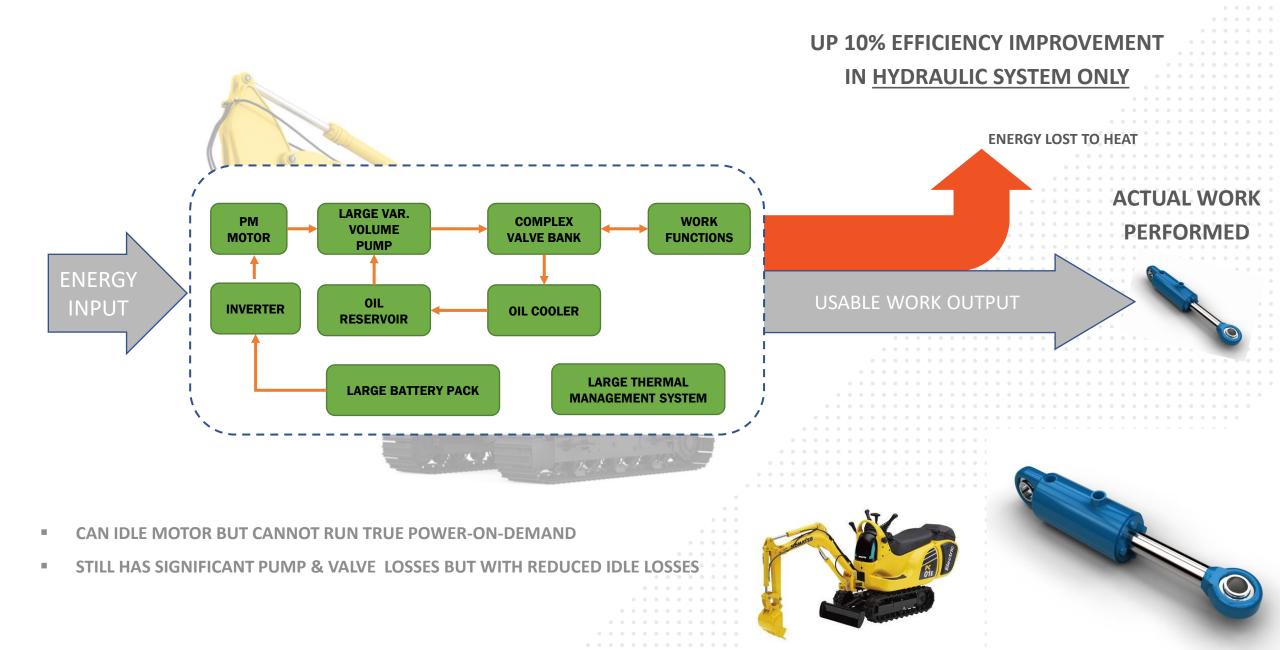
*References & calculations available.

DIVERSITY OF DUTY CYCLES & APPLICATIONS

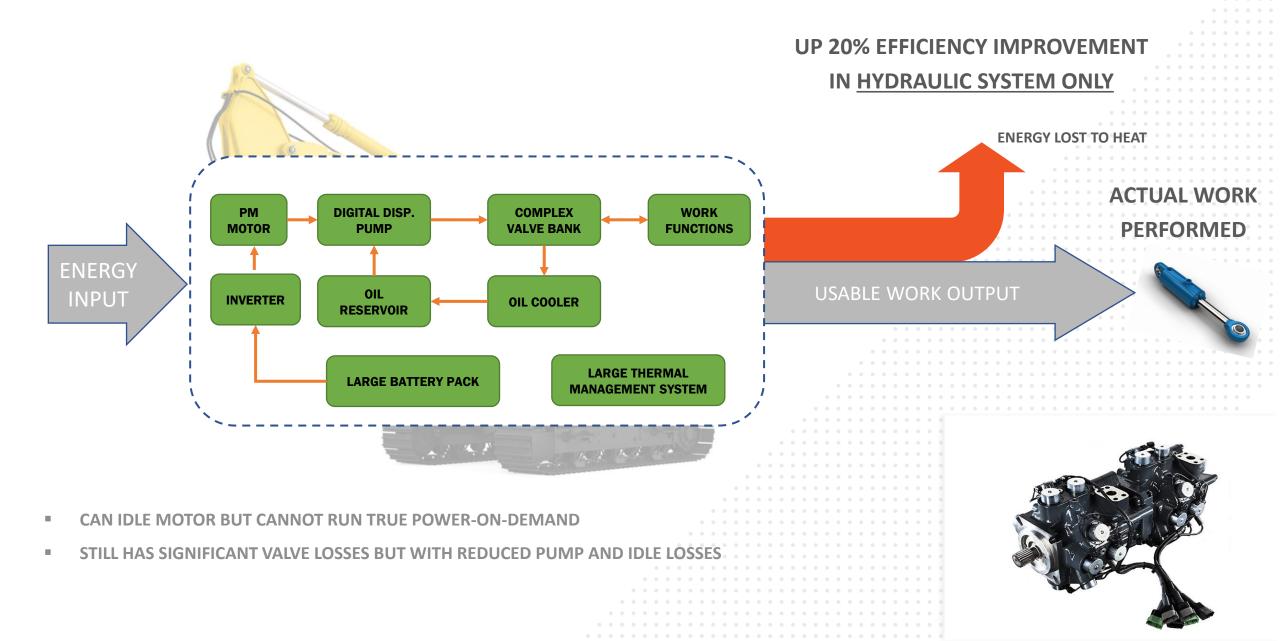


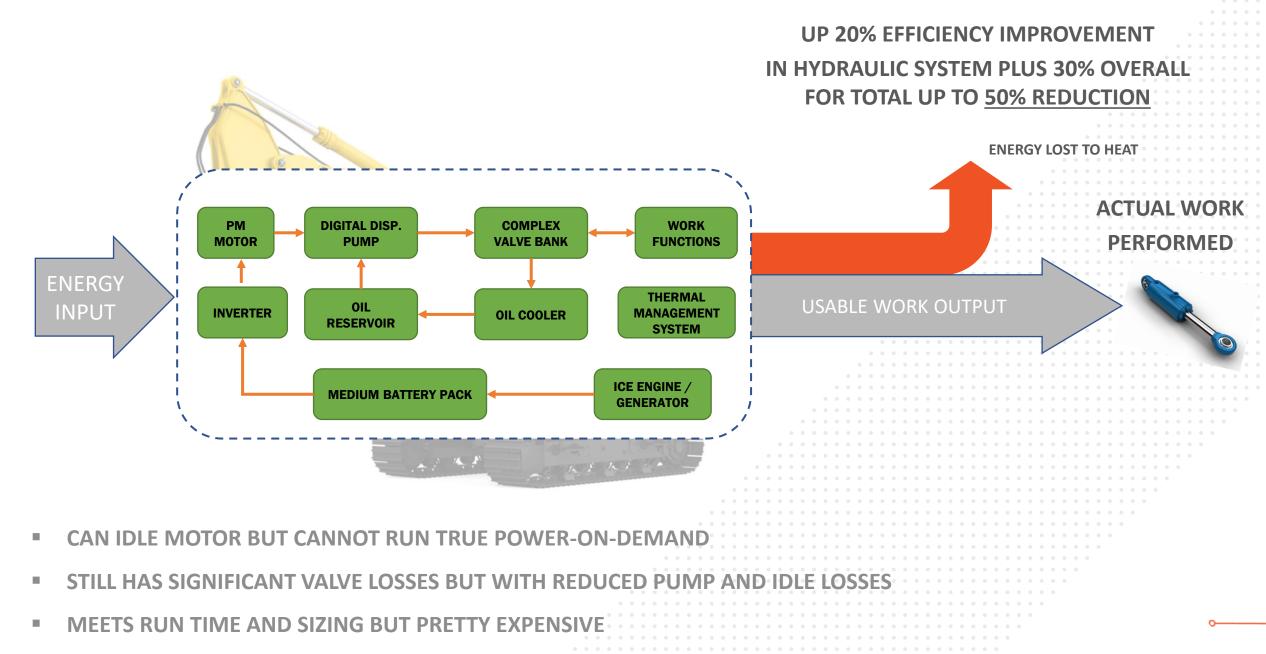

THEN WHY CARE ABOUT ELECTRIFICATION IN HYDRAULIC SYSTEMS?

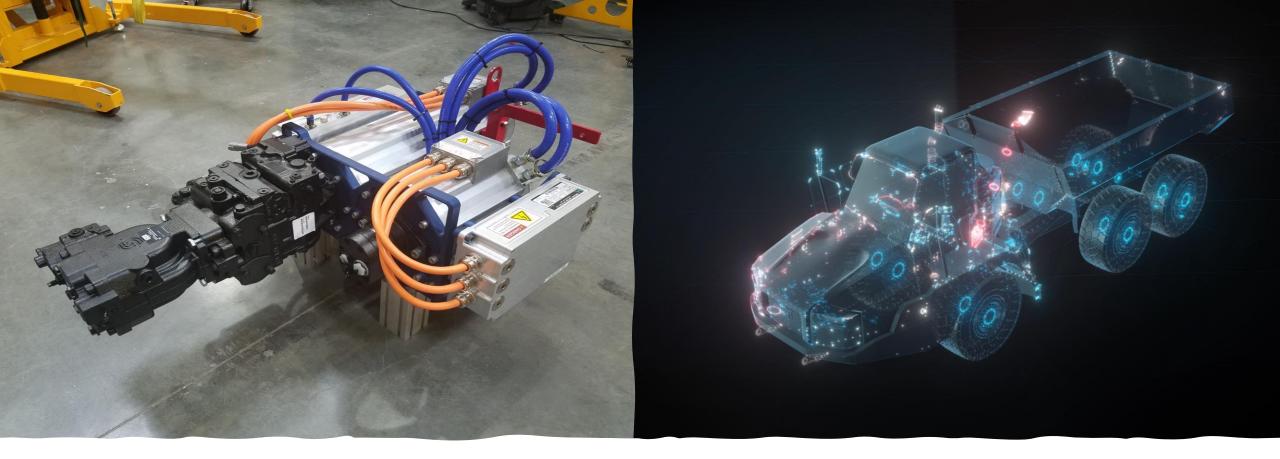
- PERFORMANCE ADVANTAGES
- REGULATORY PRESSURES
- **SKILLS SHORTAGES**
- NOISE REDUCTION
- FUEL SAVING / TCO REDUCTION


MUST FIT TECHNOLOGY TO THE CORRECT APPLICATION ONE SIZE DOES NOT FIT ALL

THE PROBLEM | NEW POWER, SAME OLD HYDRAULIC SYSTEM

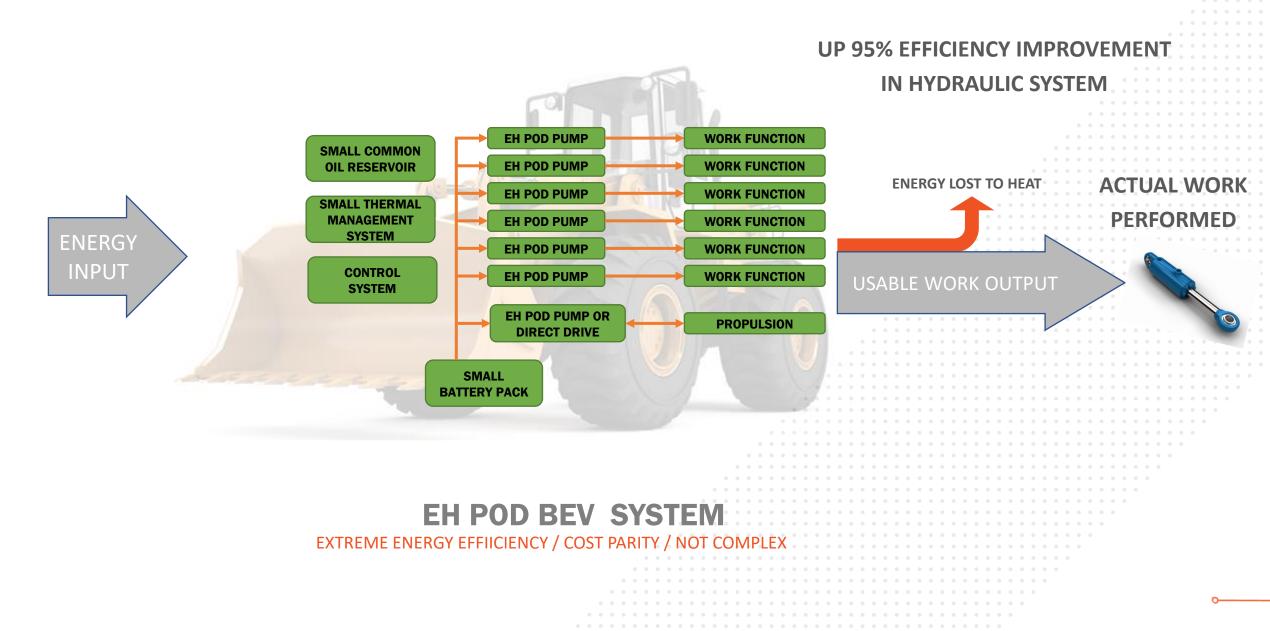



SOLUTION 1 | ELECTRO-HYDRAULIC |

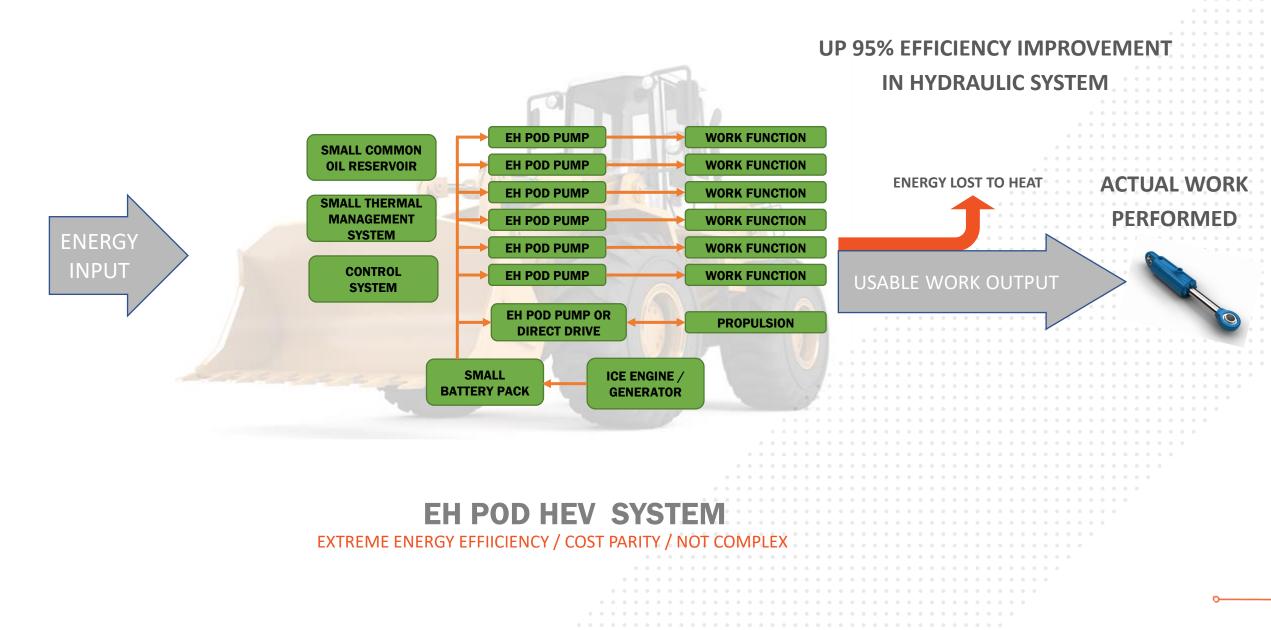


SOLUTION 2 | ELECTRO-HYDRAULIC WITH DIGITAL PUMP

SOLUTION 3 | ELECTRO-HYDRAULIC WITH DIGITAL PUMP & HYBRID


SOLUTION LIES IN FLUID POWER

HYDRAULIC OPPORTUNTIY


- MOST OFF-HIGHWAY EQUIPMENT IS EXTENSIVELY DEPENDANT ON HYDRAULICS
- PROVEN TECHNOLOGIES AND SOLUTIONS MUST BE ADAPTED
- GREATER THAN 50% IMPROVEMENT REQUIRED
- RULES OUT MANY TECHNOLOGIES AND SYSTEM ACHITECTURES
- THE GREATER UTILIZATION OF HYDRAULIC ON THE MACHINE, THE BETTER THE

USE CASE FOR ELECTRIFICATION

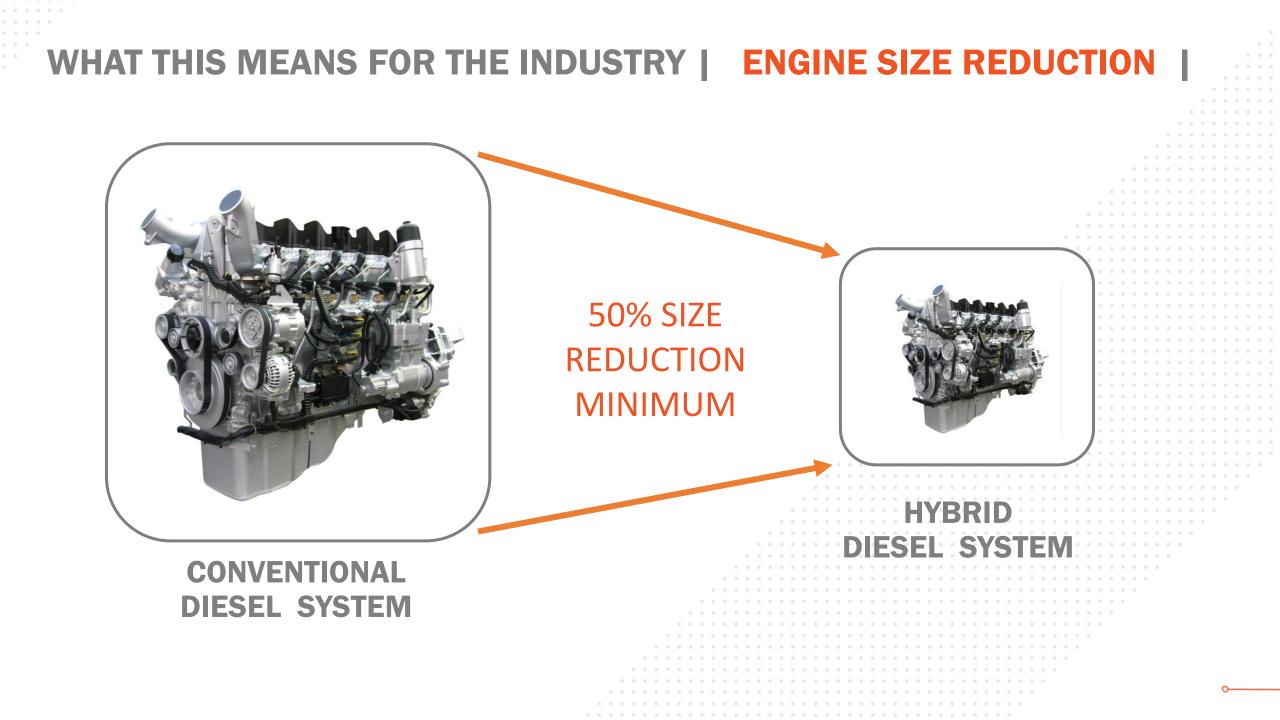
A NEW APPROACH | TRUE POWER-ON-DEMAND |

A NEW APPROACH | TRUE POWER-ON-DEMAND |

WHAT'S POSSIBLE TODAY - BEV / HEV FEASIBILITY

Battery Size by Equipment Type

Equipment Type	Usable Battery Size (kWh)	Actual Battery Size (kWh)	Rounded Actual Battery Size (kWh)
Excavators	420	546	550
Graders	491	638	640
Off-Highway Tractors	2,712	3,526	3,530
Rubber-tired Loaders	604	785	790
Scrapers	1,423	1,850	1,850
Tractors/Loaders/Backhoes	252	328	330


Source: "Hybridization and Full Electrification Potential in Off-Road Application," Boriboonsomsin, 2022

ization and Full Electrific tial in Off-Road Applicati	
(CARB Agreement No. 18RD016)	
FINAL REPORT	
Prepared for: California Air Resources Board	
By:	
iboonsomsin, Fuad Un-Noor, George Scora, Guoyu gineering - Center for Environmental Research and To	
University of California at Riverside Steven Sokolsky, Jordan Steen	
CALSTART	
January 2022	

EN HEN

	Excavator	Grader	Off-Highway Tractors	Rubber-tired Loaders	Scrapers	TLB's
Adjusted Battery Size (kWh)	135	400	2,870 (<mark>2.8MWh</mark>)	553	1,433 (<mark>1.4MWh</mark>)	145
Actual Battery Weight kg (lbs)	891 (1,971)	2,640 (5,840)	18,942 (41,902)	3,650 (8,073)	9,457 (20,921)	957 (2,117)
Adjusted Battery Cost (\$250 kWh)	\$33,750	\$100,000	\$717,500	\$138,250	\$358,250	\$36,250
Adjustment based on hydraulic %	100%	50%	25%	40%	30%	75%
Adjusted Battery Cost (\$150 kWh)	\$20,250	\$60,000	\$430,500	\$82,950	\$214,950	\$21,750
Adjusted Battery Cost (\$80 kWh)	\$10,800	\$32,000	\$229,600	\$44,250	\$114,640	\$11,600
Average vehicle purchase price (STANDARD DIESEL VEHICLE)	\$250,000	\$300,000	\$1,000,000	\$200,000	\$600,000	\$120,000

BENIHEN

ELECTRIFICATION = POWERFUL SOLUTION

MAKES BUSINESS CASE

- 1. Purchase Cost
- 2. Operating Cost

— ТСО

- 3. Maintenance Cost
- 4. Resale Value
- 5. Productivity & Performance
- 6. Durability / Longevity
- 7. Noise
- 8. Flexibility
- 9. Size
- 10. Weight
- 11. Features (i.e. operator comfort, options, etc.)
- 12. Environmental Impact / Emissions

MEETS TRENDS

- 1. Carbon-based Fuels
- 2. Renewable Energy
- 3. Compact Equipment
- 4. Connectivity
- 5. Autonomous Machinery
- 6. Sensors
- 7. Workers
- 8. Business Models
- 9. Construction Data

REGULATORY / ESG COMPLIANCE

Allows ZEV for many platforms Allows HEV for all platforms 2. Reduces hydraulic oil hazards 3. **Reduces noise** 4. Not dependent on battery cost re 5. **HEV allows non-diesel fuels** 6. **Reduces dependency on incentives Extreme PM & GHG reduction** 8.

COST BENEFIT ANALYSIS

			DEERE			
	Future BEV Excavator	Future HEV Excavator	John Deere 210G LC	John Deere 210G LC (if electric)	CAT 323 Next Generation	CAT 323 Next Generation (if electric)
Purchase Price	\$275,000	\$300,000	\$232,000	\$370,000	\$299,000	\$436,000
Vehicle Weight	50,200 lbs.	48,500 lbs.	52,097 lbs.	62,500 lbs.	56,200 lbs.	62,900
Power Option	Battery (\$250/kWh)	Diesel / Gas / LP / NG	Diesel	Battery (\$250/kWh)	Diesel	Battery (\$250/kWh)
Net Power (KW)	300	300	119	150	128	150
Fuel Cost per yr. ¹	\$4,950	\$3,350	\$19,000	\$9,000*	\$16,000	\$7,500*
Maintenance per yr. ²	\$2,750	\$3,150	\$5,380	\$3,000*	\$6,470	\$3,000*
Cost to operate (7 yrs.) ³	\$53,900	\$45,500	\$170,660	\$84,000	\$157,290	\$73,500
TC Operate Reduction	68%	73%	0%	51%	7.8%	56%
Battery Weight . ⁴	4,176 lbs.	870 lbs.	N/A	10,440 lbs.	N/A	8,700 lbs.

1. Based on national average electric cost per Kwhr and diesel cost per gallon (Q12021). Includes DEF cost @ \$3/gallon (Approx. \$1/hr.)

2. Includes both wear items (daily lubricants, tracks, & consumables) and routine maintenance

3. Minus taxes, insurance, fees, depreciation, and interest. Also does not include labor cost of operator.

4. Based on 8 hr. run time

COST BENEFIT ANALYSIS

				DEERE			
	Future BEV Excavator	Future HEV Excavator	Jol	nn Deere 210G LC	John Deere 210G LC (if electric)	CAT 323 Next Generation	CAT 323 Next Generation (if electric)
Purchase Price	\$275,000	\$300,000		\$232,000	\$370,000	\$299,000	\$436,000
Vehicle Weight	50,200 lb	48,500 lbs.		52,097 lbs.	62,500 lbs.	56,200 lbs.	62,900
Power Option	Battery (\$250/kWh)	Diesel / Gas / LP / NG		Diesel	Battery (\$250/kWh)	Diesel	Battery (\$250/kWh)
Net Power (KW)	300	300		119	150	128	150
Fuel Cost per yr. ¹	\$4,950	\$3,350		\$19,000	\$9,000*	\$16,000	\$7,500*
Maintenance per yr. ²	\$2,750	\$3,150		\$5,380	\$3,000*	\$6,470	\$3,000*
Cost to operate (7 yrs.) ³	\$53,900	\$45,500		\$170,660	\$84,000	\$157,290	\$73,500
TC Operate Reduction	68%	73%		0%	51%	7.8%	56%
Battery Weight . ⁴	4,176 lbs.	870 lbs.		N/A	10,440 lbs.	N/A	8,700 lbs.

1. Based on national average electric cost per Kwhr and diesel cost per gallon (012021), Irraddes DEF cost @ \$3/gallon (Approx. \$1/hr.)

2. Includes both wear items (daily lubricants, tracks, & consumables) and routine manneenance

3. Minus taxes, insurance, fees, depreciation, and interest. Also does not include labor cost of operator.

4. Based on 8 hr. run time

TAKE-AWAYS

- **1. BATTERIES ARE NOT THE SILVER BULLET**
- 2. SOLID BUSINESS CASE FOR ELECTRIFICATION
- 3. HYBRIDIZATION IS THE FUTURE
- 4. ENGINES WILL BE SMALLER

THANK YOU!

Michael Terzo Founder & CEO Terzo Power Systems

